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Abstract

This paper addresses nonlinear flexural vibrations of shallow shells composed of three thick layers with different shear

flexibility, which are symmetrically arranged with respect to the middle surface. The considered shell structures of

polygonal planform are hard hinged simply supported (i.e. all in-plane rotations and the bending moment vanish) with the

edges fully restraint against displacements in any direction. The kinematic field equations are formulated by layerwise

application of a first-order shear deformation theory. A modification of Berger’s theory is employed to model the nonlinear

characteristics of the structural response. The continuity of the transverse shear stress across the interfaces is specified

according to Hooke’s law, and subsequently the equations of motion of this higher order problem can be derived in

analogy to a homogeneous single-layer shear deformable shallow shell. Numerical results of rectangular shallow shells in

nonlinear steady-state vibration are presented for various ratios of shell rise to thickness, and non-dimensional load

amplitude.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Shells are three-dimensional structural elements bounded by two relatively closely spaced curved surfaces,
which are frequently employed in various civil, mechanical, and aeronautical engineering applications.
Because of their practical importance various shell theories have been developed in order to predict accurately
the static and dynamic response to mechanical loadings for preliminary design analyses. These theories cover
thin and thick shell theories, shallow and deep theories, linear and nonlinear theories among others.
Comprehensive surveys of Qatu [1,2] and Alhazza and Alhazza [3] provide insight into several shell theories
and their limitations.

In the present study the focus is on doubly curved open shallow shells composed of three thick layers of
different shear flexibility. It is noted that shallow shells refer to shells with a rise of no more than 1

5
the smallest

planform dimension [1]. Although their particular importance is widely recognized, the number of research
papers devoted to moderately large vibrations of this class of layered shallow shells, where a layerwise
formulation of the kinematic field equations is required, is relatively small. This observation is supported by
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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review papers concerning shallow shells of Liew et al. [4] and Qatu [1]. Examples of contributions in the field
of nonlinear structural vibration analysis of layered (shallow) shells can be found in Ref. [5–11]. However, it
may be of significance for some implementations to describe more precisely the effects of layerwise different
transverse shear flexibility in combination with nonlinear response issues.

In this paper, based upon a layerwise first-order shear deformation theory, the governing equations for
moderately large vibrations of doubly curved layered shallow shells with polygonal planform are derived,
expanding the ideas sketched for composite plates in Ref. [12]. Material properties and geometry of the layers
are symmetrically arranged about the middle surface. The boundaries of the considered shell structures are
hard hinged simply supported (i.e., all in-plane rotations are restrained, and the bending moment is zero) with
the displacements in all directions fully restrained. In the mechanical model the nonlinear response generated
by moderately large vibration amplitudes is considered via Berger’s theory [13] modified by a layerwise
application of the Mindlin–Reissner kinematic hypothesis. Results of rectangular shaped shells are presented
in form of amplitude frequency response functions, and they demonstrate the effects of interactions between
the initial curvature, transverse shear flexibility, and time-harmonic mechanical loads on the hardening and/or
softening type of the nonlinear response.

2. Basic equations

In the present analysis, an open doubly curved shallow shell composed of three thick isotropic layers is
considered. The layers are perfectly bonded, and thickness and linear elastic properties of the upper and lower
face are symmetrically arranged with respect to the middle surface. Faces and core may exhibit extremely
different elastic moduli with a common Poisson’s ratio n. The shell is referred to the curvilinear coordinates x

and y that follow the lines of principal curvature, and z is a coordinate outward perpendicular to the curved
middle surface (see Fig. 1). The edges of the shallow shell with polygonal planform are hard hinged supported
and the displacements normal to the edge face are fully restrained (i.e., along the edge the displacements in all
directions and the in-plane rotations are restrained, and the bending moment is zero). The contour of the
middle surface and its projected plane (in Fig. 1 denoted by xy-plane) coincide, i.e. all edges are straight.
Throughout the paper index i ¼ 2 refers to quantities of the core, whereas i ¼ 1, 3 belong to the lower and
upper face, respectively (Fig. 2).

Let kx ¼ R�1x and ky ¼ R�1y denote the principal curvatures, and 2u
ð0Þ
x ; 2u

ð0Þ
y , w the components of the

displacement at the middle surface in x, y and z direction, respectively. Applying a first-order shear
deformation theory to each thick layer separately the in-plane displacements iux; iuy in the ith layer in x and y

direction, respectively, at distance z from the middle surface may be expressed as [15]

iujðx; y; zÞ ¼ iu
0
j ðx; y; zÞ þ z icjðx; yÞ; i ¼ 1; 2; 3; j ¼ x; y. (1)

iu
ð0Þ
x ; iu

ð0Þ
y denote in-plane displacements at z ¼ 0 (see Fig. 2), and icx, icy are layerwise cross-sectional

rotations, i ¼ 1, 2, 3.
z, w
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Ry

x, 2u x
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Fig. 1. Geometry and coordinate system of a three-layer shallow shell element.
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Fig. 2. Three-layer composite shallow shell, xz-plane. Corresponding horizontal displacement field.
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Assuming perfect bond between the layers (i.e. no interlayer slip is admitted), the in-plane displacements

iu
ð0Þ
x ; iu

ð0Þ
y of the faces (i ¼ 1, 3) can be expressed in terms of the in-plane displacements of the middle surface

2u
ð0Þ
x ; 2u

ð0Þ
y and the cross-sectional rotations (see Fig. 2) [12]:

iu
ð0Þ
j ðx; yÞ ¼ 2u

ð0Þ
j ðx; yÞ þ zi 2cjðx; yÞ � icjðx; yÞ

h i
; i ¼ 1; 3; j ¼ x; y, (2)

where z1 ¼ �h2/2, z3 ¼ h2/2 denote normal distances from the middle surface to the upper and lower interface,
respectively.

Moderately large deflections w lead to an interaction between the membrane stresses and the curvatures,
which is reflected by nonlinear terms in the strain–displacement relations. According to von Kármán and
Tsien [14] the nonlinear middle surface strains for moderately large deflections w are given by:

ejðx; yÞ ¼ 2u
ð0Þ
j;j ðx; yÞ þ wðx; yÞkjðx; yÞ þ 1

2
w;jðx; yÞ
� �2

; j ¼ x; y, (3a)

exjðx; yÞ ¼ 2u
ð0Þ
x;yðx; yÞ þ 2u

ð0Þ
y;xðx; yÞ þ w;xðx; yÞw;yðx; yÞ. (3b)

Comma denotes partial differentiation with respect the corresponding coordinates x and y. The strains at
distance z from the middle surface become:

i�jðx; y; zÞ ¼ iuj;jðx; y; zÞ þ wðx; yÞkjðx; yÞ þ 1
2

w;jðx; yÞ
� �2

, (4a)

igxyðx; y; zÞ ¼ iux;yðx; y; zÞ þ iuy;xðx; y; zÞ þ w;xðx; yÞw;yðx; yÞ,

igjzðx; y; zÞ ¼ iuj;zðx; y; zÞ þ w;jðx; yÞ; i ¼ 1; 2; 3; j ¼ x; y. ð4bÞ

The constitutive relations are linear. For an isotropic, elastic material the stress components sx, sy, txy are
related to the strains by means of the Hooke’s law, see e.g., Ref. [16],

isj ¼
2Gi

1� n i�j þ n i�k

� �
; itxy ¼ Gi igxy; i ¼ 1; 2; 3; j ¼ x; k ¼ y and j ¼ y; k ¼ x, (5)

where Gi is the shear modulus of the isotropic ith layer. The normal stress component sz is assumed to be
negligible and subsequently dropped.

Transverse shear stress components txz, tyz are specified to be continuous across the interfaces. Two types of
approximations are acknowledged in the literature. The ‘‘correct’’ shear stress expressed by means of the law
of conservation of momentum satisfies the in-plane equilibrium by itself, see e.g., Ref. [15]. Alternatively,
prescribing the continuity of the transverse shear stresses according to Hooke’s law renders a simplified
boundary value problem [17–19],
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itjz ¼ Gi icj þ w;j

� �
; iþ1tjz ¼ Giþ1 iþ1cj þ w;j

� �
; i ¼ 1; 2; j ¼ x; y, (6)

In analogy to the Mindlin theory for homogeneous plates, Eq. (6) exhibits the simplified assumption that
the shear stress is uniformly distributed throughout the layers. From this relation and in combination with
G1 ¼ G3 it follows that the cross-sectional rotations of both faces are identical,

1cj ¼ 3cj ; j ¼ x; y. (7)

Layerwise stress resultants, i.e., the layerwise moment resultants imx; imy; imxy and shear force resultants

iqx; iqy are determined by integration of the stress components, Eq. (5), with respect to the thickness of the
layers,

imj ¼

Z aiþ1

ai

isjzdz; imxy ¼

Z aiþ1

ai

itxyzdz; iqj ¼

Z aiþ1

ai

itxy dz; i ¼ 1; 2; 3; j ¼ x; y. (8)

Utilizing Eqs. (6) and (7) the cross-sectional rotations of the faces are eliminated, and hence, the layerwise
resultants can be expressed in terms of the lateral deflection w, the cross-sectional rotations 2cx; 2cy of the
core, the middle surface strains and their derivatives.

The overall stress resultants of the shallow shell are determined by layerwise summation,

mj ¼
X3
i¼1

imj ; mxy ¼
X3
i¼1

imxy; qj ¼
X3
i¼1

iqj ; j ¼ x; y (9)

and they are obtained as (see also Ref. [12]),

mj ¼
2

1� n

X3
i¼1

bi þ Ci

� �
2cj;j þ biw;jj þ n bi þ Ci

� �
2ck;k þ biw;kk

� �n o
,

j ¼ x; k ¼ y and k ¼ x; j ¼ y, ð10aÞ

mxy ¼
X3
i¼1

bi þ Ci

� �
2cx;y þ 2cy;x

� �
þ 2biw;xy

h i
, (10b)

qj ¼
1

w 2cj þ w;j

� �
; j ¼ x; y. (11)

Ai, Bi and Ci represent layerwise stiffness coefficients:

Ai ¼ Gihi; Bi ¼
1
2
Gi a2

iþ1 � a2
i

� �
; Ci ¼

1
3
Gi a3

iþ1 � a3
i

� �
; i ¼ 1; 2; 3, (12a)

a1 ¼ �h=2; a2 ¼ �h2=2; a3 ¼ h2=2; a4 ¼ h2=2, (12b)

w denotes an overall shear rigidity and si are layerwise shear rigidities,

w ¼
s1s2G1

2s2G2 þ s1G1
; s1 ¼

1

k2Gihi

; i ¼ 1; 2; 3, (13)

and

b1 ¼ b3 ¼
1

2
B1h2 þ C1

� �
G2

G1
� 1

� �
; b2 ¼ 0. (14)

In Eq. (13), a shear correction factor k2 is employed, because the transverse shear stresses are assumed to be
constant through the thickness. This is the same concept used in the Mindlin–Reissner theories for thick
plates. The proper choice of k2 is discussed in Ref. [15].

The in-plane displacements of the middle surface at the edges G are fully restrained, i.e.

2u
ð0Þ
x jG ¼ 0; 2u

ð0Þ
y jG ¼ 0, and hence, according to Nash and Modeer [20] moderately large lateral deflections

of shallow shells may be considered simplified by means of Berger’s approximation. This approximation is
based on the assumption that the elastic energy given by the second invariant of the middle surface strain
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tensor may be disregarded as compared to the square of the first invariant without substantially affecting
the response. In Berger’s approach, the influence of the in-plane force resultants is characterized by a
time-dependent isotropic force n, which is a constant throughout the shell domain O, compare [8,21],

n ¼ �
D

2O

Z
O

wðDw� 4HÞdO, (15)

where

D ¼
2

1� n

X3
i¼1

Ai, (16)

denotes an effective longitudinal stiffness, and

H ¼
kx þ ky

2
, (17)

represents the initial Gaussian curvature of the middle surface. Eq. (15) shows that n is not explicitly affected
by the shear [22].

3. Equation of motion and boundary conditions

The equations of motion are derived by considering the free-body diagram of an infinitesimal shell element,
loaded by the lateral forcing function p(x, y; t). Thereby, in a common approximation, both, the longitudinal

as well as the rotatory inertia are neglected, i €u
ð0Þ
j ¼ 0; i

€c
ð0Þ

j ¼ 0; thus, limiting the analysis to the lower

frequency band of structural dynamics. Conservation of momentum in z-direction and conservation of
angular momentum with respect to the x- and y-coordinates give:

qx;x þ qy;y þ pþ nðDw� 2HÞ ¼ m €w, (18)

my;y þmxy;x � qy ¼ 0; mx;x þmxy;y � qx ¼ 0. (19)

Substitution of Eqs. (10) and (11) into Eqs. (18) and (19) and combination of Eqs. (18) and (19) after
derivative with respect to x and y renders after some algebra the following equation of motion of the nonlinear
shallow shell problem in terms of the lateral deflection w,

Kr2r2wþ Ksen r
2r2w� 2r2H

� �
� n r2w� 2H
� �

� mKser
2 €wþ m €w ¼ p� Kser

2p. (20)

Expression (20) may be understood as the equation of motion of a single-layer isotropic shear deformable
shallow shell with mass per unit area m, effective shear rigidity se, and flexural stiffness K. The effective
properties are given by:

m ¼ 2r1h1 þ r2h2; se ¼
gw
K
; K ¼

2

1� n
2C1 þ C2ð Þ, (21a)

g ¼
2

1� n
B1h1

G2

G1
� 1

� �
þ 2C1

G2

G1
� C2

	 

. (21b)

In Eq. (21a) r1, r2 denote the mass densities of the faces and the core, respectively.
The boundaries of the shallow shell are simply supported (i.e., the displacements are restrained and the

bending moment is zero), and the individual in-plane cross-sectional rotations are restrained. These boundary
conditions of the hard hinged type can be modeled in the form [19],

G : w ¼ 0; ics ¼ 0; mn ¼ 0; i ¼ 1; 2; 3, (22)

where n, s are local Cartesian coordinates at boundary G with normal n pointing outwards. Furthermore,
conservation of momentum in z-direction at G for a differential shell element renders:

G : qn;n þ qs;s þ n r2w� 2H
� �

þ p ¼ 0. (23)
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Considering only polygonal contours G (i.e. straight edges) w ¼ 0 can be expressed by w,s ¼ w,ss ¼ 0, and

ics ¼ 0 may be replaced by ics;s ¼ 0. Evaluating Eqs. (22) and (23) leads to two boundary conditions in w,

G : w ¼ 0; r2wþ sen r
2w� 2H

� �
¼ �sep. (24)

According to Ref. [12,18] overall effective cross-sectional rotations ecx; ecy (common to all layers) may be
found by equating the overall shear forces of the current shell problem, Eq. (11), with the shear force of a
corresponding single-layer shear deformable shallow shell [8],

qj ¼
1

se
ecj þ w;j

� �
, (25)

and subsequent decomposition as

ecj ¼
se

w 2cj þ
se

w
� 1

� �
w;j ; j ¼ x; y. (26)

Eq. (26) are substituted into Eq. (10) and also the overall bending and twisting moments are obtained in
analogy to a homogeneous shallow shell.

Utilizing ecx, ecy the equation of motion (20) can be separated to form a set of three equations,

�
1

Se

r2wþ ecx;x þ ecy;y

� �
� n r2w� 2H
� �

þ m €w ¼ p�
1

Se

, (27a)

�K ecj;jj þ
1� n
2

ecj;kk þ
1þ n
2

eck;jk

� �
�

1

se
ecj þ w;j

� �
¼ 0; j ¼ x; k ¼ y and k ¼ x; j ¼ y, (27b)

and the boundary conditions (24) may be re-written as

G : w ¼ 0; ecs ¼ 0; ecn;n ¼ 0. (28)

It is noted that Eqs. (27) and (28) describe the higher-order problem of moderately large flexural vibrations
of a shallow shell with straight edges on hard hinged immovable supports, which is modeled by piece-
wise continuous in-plane displacement fields, in full analogy to the lower-order engineering theory
of a corresponding isotropic single-layer shallow shell (with identical planform, initial curvature and
boundary conditions). Hence, all solution techniques developed for homogenous shear deformable shallow
shell become applicable to determine the kinematic variables w, ecx and ecy of the actual boundary value
problem.

In a subsequent step the individual cross-sectional rotations of the core 2cx; 2cy and of the faces 1cx; 1cy

are derived by decomposition of Eqs. (26) and (6), [12],

2cj ¼
w
se

ecj � 1�
w
se

� �
wj ; 1cj ¼

G2

Gi
2cj þ w;j

� �
� w;j ; i ¼ 1; 3; j ¼ x; y. (29)
4. Nonlinear steady-state response of layered shallow shells

In the following the dynamic response of rectangular shallow shells to time-harmonic excitation is
examined. The shells of length a, width b and thickness h consist of three layers with layer to overall thickness
ratios of h2=h ¼ h3=h ¼ 1

3
. The overall dimension is characterized by the aspect ratio a=b ¼ 2

3
and by the

thickness to length ratios h=a ¼ 1
10
and 1

20
, respectively. The mechanical properties of the faces and the core are

specified through the ratio G1(3)/G2 ¼ 20. Poisson’s ratio is selected to be uniform to all layers, n ¼ 0.3. A shear
coefficient of k2 ¼ 1 is considered. The mean curvature of the middle surface follows a sine half-wave
according to:

H ¼
ŵ0

2

p2

a2
þ

p2

b2

� �
sin

px

a
sin

py

b
, (30)
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where ŵ0 denotes rise of the middle surface (the maximum initial displacement with respect to the base plane
of the shell), which is varied within the scope of the subsequent studies. Note that the x and y coordinates
point in the direction of length a and b, respectively, and their origin is in a corner of the shell.

For the solution of the actual boundary value problem represented by Eqs. (15), (27) and (28) the kinematic
variables w, ecx and ecy are expanded into the ortho-normalized set of mode shapes F(mn), xc

ðmnÞ and yc
ðmnÞ,

wðx; y; tÞ ¼
X1

m¼1;n¼1

Y mnðtÞFðmnÞðx; yÞ; ecjðx; y; tÞ ¼
X1

m¼1;n¼1

Y mnðtÞjCðmnÞðx; yÞ; j ¼ x; y, (31)

of the corresponding linearized shallow shell equations. For a rectangular shear deformable shallow shell the
mode shapes are given by:

FðmnÞðx; yÞ ¼ Amn sin amx sin bny; n ¼ 1; . . . ;1; m ¼ 1; . . . ;1, (32a)

xCðmnÞðx; yÞ ¼ Bmn cos amx sin bny; yCðmnÞðx; yÞ ¼ Cmn sin amx cos bny, (32b)

Amn ¼
2ffiffiffiffiffi
ab
p ; Bmn ¼ �

Amnam

Kseamn þ 1
; Cmn ¼ �

Amnbn

Kseamn þ 1
; am ¼

mp
a
; bn ¼

np
b
. (33)

Note that the mode shapes of the flat rectangular plate with equally shaped base plane and of the shell are the
same, i.e. they are not affected by the Gaussian curvature H, which is proportional to the fundamental mode
shape F(11), see Eq. (30), Ref. [23] and Appendix A. Multiplication of the mode expanded equations with the
srth mode shape for sr ¼ 1 . . .1 and subsequent integration about the planform of the shell leads under
consideration of the orthogonality properties of the mode shapes to a coupled set of nonlinear ordinary
differential equations for the modal coordinates Ymn,

€Y mn þ 2zmnomn
_Y mn þ o2

mnY mn þ
D

Om
amn

a11
A11

ŵ0Y mnY 11

þ
D

2Om
amnY mn

a11
A11

ŵ0d11

� �X1
r;s¼1

arsY
2
rs ¼

1

m
Pmn; n ¼ 1; . . . ;1; m ¼ 1; . . . ;1. ð34Þ

In Eq. (34) amn is the mnth Dirichlet Helmholtz eigenvalue of the corresponding rectangular membrane, see
Refs. [16, p. 472],

amn ¼ a2
m þ b2

n (35)

and omn denotes the mnth natural circular frequency of the linearized shallow shell, see Ref. [23] and
Appendix A,

omn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
Ka2mn

Ksea2mn þ 1
þ

Dŵ2
0a

2
11

OA2
11

d11

" #vuut , (36)

d11 denotes the Kronecker delta ( ¼ 1 for nm ¼ 11, otherwise ¼ 0), i.e. only the fundamental frequency is
influenced by the mean curvature H. The mnth modal load coefficient is determined by

PmnðtÞ ¼

Z
O
Fmnðx; yÞpðx; y; tÞdO. (37)

In Eq. (34) structural damping has been introduced via modal damping coefficients zmn. Incorporation of
viscous damping in the response is another convenient feature of the modal approach to the nonlinear
problem. In the subsequent computations all included damping coefficients are set equally to zmn ¼ 0.05.

Note that Eq. (34) contains nonlinear quadratic terms in the form Yrs
2 with r, s6¼m, n. The mixed quadratic

terms vanish because the mode shapes of the considered shells and the curvature of the middle surface are
proportional. The nonlinear cubic terms of the (m,n)-oscillator are proportional to Ymn. Non-proportional
cubic terms do not occur in this equation because the mode shapes of the considered shells and the curvature
of the middle surface are proportional, and the nonlinear behavior of the structures is described simplified by



ARTICLE IN PRESS
C. Adam / Journal of Sound and Vibration 299 (2007) 854–868 861
means of Berger’s theory (Eq. (15)). Compare with studies (Refs. [24,25]) devoted to homogeneous shell
vibrations, where terms in form Ypq Yrs and Ypq Yrs Ytu with p, q, r, s, t, u 6¼m, n are present in the mnth modal
equation.

In particular, linear and nonlinear frequency response functions due to a uniformly distributed lateral load:

pðx; y; tÞ ¼ p0 sin ut, (38)

are derived by sweeping the excitation frequency u. For the present study the load amplitude p0 is presented in
non-dimensional form according to:

p� ¼
p0a

3

K
. (39)

For this non-dimensional representation of the lateral load it is assumed that the characteristic length of the
shell is a. At time t ¼ 0 the time-harmonic load is subjected to the shell and the nonlinear modal Eq. (34) are
solved performing a time history analysis. Thereby, the infinitive series (31) are approximated by considering
the first 4 symmetric modes. The corresponding mode shapes are shown in Fig. 3. Tentative calculations
varying the number of modes have shown that this approximation is sufficient for prediction of the harmonic
response of the considered structures. A discussion about the required number of modes is given by Alhazza
[3]. After decay of the transient response the maximum of the steady-state response is recorded. It is assumed
that the of the transient regime is reached when 8 consecutive maxima and minima of the dynamic response do
not differ from each other more then 0.1%.

Fig. 4 shows non-dimensional amplitude functions of the lateral deflection at the center for thick shells (i.e.,
h/a ¼ 0.1) with various radii of initial curvatures, which are characterized by the shell rise to thickness ratio
ŵ0=h. The corresponding non-dimensional load amplitude p* is 1.0. The amplitude functions W+ are
normalized by means of the corresponding static central deflection ws+, due to the static external pressure
p ¼ p0; and the excitation frequency u is related to the fundamental frequency o11 of the corresponding linear
plate with identical shape (i.e., ŵ0=h ¼ 0). Note that W+ is the inward displacement amplitude (in direction of
the center of curvature), which is different from the outward amplitude W�. For the definition of W+ and W�
see Fig. 5, where an example of a time history plot of the steady-state lateral displacement is shown. From
Fig. 4 it can be seen that the plate exhibits a pronounced hard spring behavior. As the ratio ŵ0=h is increased
the hard spring response diminishes and is reversed to a soft spring behavior. The shell with ŵ0=h ¼ �0:50
shows a soft spring response for small vibration amplitude, followed by a hard spring response as the
(a) (b)

(c) (d)

Fig. 3. Mode shapes retained in the analysis: (a) mode shape f11, (b) mode shape f31, (c) mode shape f13, (d) mode shape f33.
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amplitude increases. This nonlinear behavior can be attributed to the fact that the initial stiffness of the shell is
primarily membrane in nature, whereas for larger vibration amplitudes bending becomes dominant [9]. The
bending deformation of the resonance curves leads for ŵ0=h ¼ 0; �0:25 and � 0:75 to multivalued amplitudes
and the entire solution splits into stable and unstable branches. At those points where the tangent is vertical
the well-known jump phenomenon occurs. However, in Fig. 4 only the stable portions of the response are
displayed (because the outcomes are derived by time history analyses). For all considered shell structures the
influence of subharmonic resonance becomes visible by additional peaks at about half of the shell’s linearized
primary resonance frequency, i.e. the considered mode is excited by a signal of frequency close to half of its
natural frequency.

In Fig. 6 normalized amplitude functions W+ are depicted for a shell with ŵ0=h ¼ �0:50 in order to show
the crossover from linear to nonlinear behavior with increasing magnitude of the applied load p*. Note that
W+ due to p* ¼ 1.00 and 1.50 are both normalized with respect to ws+ due to p* ¼ 1.00. Note that the
dynamic response close to the natural frequency o13 with corresponding (second) symmetric mode shape is
almost not affected by the nonlinear terms in the governing equations. The natural frequency ratio o11/o13 of
the considered shell is 0.476.

The convergence study shown in Fig. 7 demonstrates that a four mode presentation of the nonlinear
dynamic response is sufficient to approximate the normalized amplitude functions W+ at the center of the
considered shallow shell examples.
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Fig. 8 presents inward amplitude response functions of the individual cross-sectional rotations 1cx and 2cx,
the effective cross-sectional rotation ecx and the derivative of the deflection with respect to x, w,x, at point
(x/y ¼ 0/0.5 b) for the shell of same geometry. All individual rotation amplitude curves are normalized by
means of the corresponding effective cross-sectional rotation ec

S
xþ due to the static external pressure p ¼ p0. A

non-dimensional load amplitude of p* ¼ 1 is considered. It can be seen that the cross-sectional rotations of the
core and the faces do not coincide. In the primary resonance domain the amplitudes 1Cxþ of the face response
are larger than those of the core (2Cxþ), in the vicinity of the second excited mode 2Cxþ exceeds 1Cxþ. The
amplitude response 1Cxþ is slightly overestimated by W ;xþ at the primary resonance frequency, otherwise the
corresponding graphs are identical. Fig. 9 depicts amplitude response functions of the cross-sectional rotations

1cx; 2cy; ecy as well as of w,y at point (x/y ¼ 0.5 a/0), and they are related to the effective cross-sectional
rotation ec

s
yþ due to the static external pressure p ¼ p0. It is interesting to note that for this point the

resonance curves of the faces exhibit larger magnitudes than those of the faces in the whole frequency range,
which is a contradiction to the results of Fig. 8. From Figs. 8 and 9 it can be concluded that a layerwise
description of the kinematic variables is essential to predict the behavior of the considered shallow shell.

The corresponding comparison between the inward and the outward vibration amplitudes is shown in
Figs. 10–12. It is remarkable that the inward response amplitudes W,x+, 1Cxþ; 2Cxþ exceed in magnitude the
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outward displacements W ;x�; 1Cx�; 2Cx� in the quasistatic and in the primary resonance domain. At
higher frequencies the quantities are of the same magnitude, because the influence of the nonlinearities is
diminishing.

Subsequently, a thin shallow shell with a thickness to length ratio h/a ¼ 0.05 and a rise of ŵ0=h ¼ �0:50 is
considered. In Fig. 13 the normalized amplitude functions W+/ws+ of the lateral deflection at the shell
center are presented for the magnitudes of the applied load p* of 1.00 and 1.50. Fig. 14 shows normalized
amplitude functions of the individual cross-sectional rotations 1cx and 2cx, the effective cross-sectional
rotation ecx and the derivative of the deflection with respect to x, w,x, at point (x/y ¼ 0/0.5 b) for p* ¼ 1.00.
It can be seen that for this thin shell the cross-sectional rotations of the faces and of the core are almost
identical in the quasi-static frequency range, i.e. the in-plane displacements of the structure could be described
by means of a single cross-sectional rotation common to all layers. With increasing excitation frequency
a difference between the individual cross-sectional rotations becomes apparent, which is significant
at u/o11(plate) ¼ 3.2. From this result it can be concluded that the importance of a layerwise description of
the displacement field is not only a function of geometry and material parameters but also of the considered
frequency range.
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5. Conclusions

Based upon a layerwise first-order theory nonlinear equations of motions for moderately large amplitude
vibrations of composite doubly curved shallow open shells with polygonal planform are derived. The three
layers of the considered shell structures are symmetrically arranged about the middle surface, and may possess
extremely different shear flexibility. The displacements of the hard hinged supported edges are restrained in
any direction, and thus, geometric nonlinearities are accounted for according to Berger’s approximation.
Amplitude frequency response functions of rectangular shallow shells with a Gaussian curvature affine to the
linearized fundamental mode shape are found by a modal projection of the nonlinear response variables
according to the corresponding linearized mode shapes. Depending on the shell rise the considered structures
exhibit hardening or softening type of response behavior, or, depending on the initial curvature, a
combination of both. From the results it can be concluded that for thick shells a layerwise description of the
kinematic variables is essential to predict the in-plane displacement response with sufficient accuracy. For thin
shell a single cross-sectional rotation may describe with sufficient accuracy the displacement field in the low
frequency range.
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Appendix A

In this appendix the main results of Ref. [23] are summarized, where free vibrations of shear deformable
shallow shells with polygonal planform are studied. Linearization of Eq. (20) leads to the differential equation
of motion for free small amplitude vibrations wl of the shallow shell,

KDDwl � 2KsenlDH þ 2nlH � mKseD €wl þ m €wl ¼ 0, (A.1)

nl ¼
2D

O

Z
O

wlH dO; Hðx; yÞ ¼ �
1

2
Dŵðx; yÞ, (A.2)

with the precurvature of the shell ŵ. The lateral deflection w and the Gaussian curvature H are expanded in a
series of functions, which satisfy the boundary conditions. This is provided by the mode shapes of the
corresponding plate (i.e., same plane form and boundary conditions as the shallow shell) F(mn)(x, y); for the
considered shell problem see Eq. (32a). Thus, w and H may be expressed by

wlðx; y; tÞ ¼
X1

m¼1;n¼1

Y l
mnðtÞF

ðmnÞðx; yÞ; H ¼ �
1

2

X1
m¼1;n¼1

gmn

Amn

DFðmnÞðx; yÞ. (A.3)

The coefficients gmn are defined by the initial curvature, whereas the time-dependent coordinates Yl
mn(t) are the

new unknown in the differential equation. Inserting Eq. (A.3) into Eq. (A.1), multiplication by F(rs) for
rs ¼ 1; . . . ;1 and integration over the plane form leads due to the orthogonality of F(rs) to a coupled set of
ordinary differential equations for Yl

mn(t),

€Y
l

mn þ
X1

i¼1;j¼1

amnijY
l
ij ¼ 0; (A.4)

amnij ¼
1

m
Ka2mndmnij

Kseamn þ 1
þ

Dgijaijgmnamn

OA2
ij

" #
; gmn ¼ Amn

Z
O

ŵFðmnÞ dO, (A.5)

where dmnij denotes the Kronecker delta ( ¼ 1 for nm ¼ ij, otherwise ¼ 0). From this set of equations the
natural frequencies of the shallow shell are computed. It can be seen that the coupling terms amnij are tied to
the existence of gmn. When the Gaussian curvature is affine to the rsth shape function F(rs) the linearized
curvature of Eq. (A.3) is reduced to H ¼ �grsDF

ðrsÞ=2, where grs determines the maximum rise of the shell. All
other coefficients gmn vanish: gmn ¼ 0 (mn 6¼rs). Thus, the coefficients amnij are simplified and all coupling terms
in Eq. (A.4) are eliminated. Then, the natural frequencies of the shallow shell are derived as,

omn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
Ka2mn

Kseamn þ 1
þ

Dg2rsa2rs

OA2
rs

dmnrs

" #vuut . (A.6)

From this equation it can be observed that the frequency increase caused by the curvature is independent of
the shear stiffness. In Eq. (A.6) gmn ¼ 0 (mn6¼rs), and thus only the natural frequency ors is affected by the
initial curvature, whereas all other natural frequencies coincide with the natural frequencies of the
corresponding plate.
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[14] T. von Kármán, H.S. Tsien, The buckling of cylindrical shells under axial compression, Journal of Aeronautical Sciences 8 (1941)

303–312.

[15] Y.-Y. Yu, Vibrations of Elastic Plates, Springer, New York, 1995.

[16] F. Ziegler, Mechanics of Solids and Fluids, second ed., Springer, New York, 1998.

[17] M.-J. Yan, E.H. Dowell, Governing equations for vibrating constrained-layer damping sandwich plates and beams, Journal of

Applied Mechanics 39 (1972) 1041–1046.

[18] R. Heuer, Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy, Acta Mechanica 91

(1992) 1–9.

[19] C. Adam, Dynamic analysis of isotropic composite plates using a layerwise theory, Composite Structures 51 (2001) 427–437.

[20] W.A. Nash, J.R. Modeer, Certain approximate analyses of the nonlinear behavior of plates and shallow shells, in: W.T. Koiter (Ed.),

Proceedings of the IUTAM-Symposium on the Theory of Thin Elastic Shells, Delft, 1959, North-Holland Publishing Company,

Amsterdam, 1960, pp. 331–354.

[21] R. Heuer, F. Ziegler, Thermoelastic stability of layered shallow shells, International Journal of Solids and Structures 41 (2004)

2111–2120.

[22] C.-I. Wu, J.R. Vinson, Influences of large amplitudes, transverse shear deformation, and rotatory inertia on lateral vibrations of

transversely isotropic plates, Journal of Applied Mechanics 36 (1969) 254–260.

[23] M. Hochrainer, U. Pichler, H. Irschik, Membrananalogie für Eigenfrequenzen flacher Schalen, Zeitschrift für Angewandte

Mathematik und Mechanik 79 (S2) (1999) S409–S410 (in German).

[24] K.A. Alhazza, Nonlinear Vibrations of Doubly Curved Cross-ply Shallow Shells. PhD Thesis, Virginia Polytechnic Institute and

State University, 2002.
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